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§ 1 Introduction

Let X denote a random variable having density function
f(z|0) = alz) — oy Jlo<z<6] (1.1)
A(f) ’

where a(z) is a function on [0, 00), and continuous, positive for z > 0, A(8) = [ a(z)dz <
oo for every 8 > 0, 0 is the parameter, which is distributed according to an unknown
prior distribution G on [0, c0).

We consider the problem of testing the hypotheses Hy : 8 < 6y verses Hy : § > 6,
where 6y > 0, is a known constant.

Let a = 7 be the action in favor of H;. For the parameter # and action a, we use the
loss function

1(0,a) = a(B — 0)Ij9<e,) + (1 — a)(0 — o) I1p>g,)- (1.2)
Assume that
/9 0dG(6) < co. (1.3)
Define o 1
ag(r) = /z Te)dG(e),
and

wo(a) = [ 77746(0).

By Fubini Theorem,
/0 " a(@)ac(z)ds (1.4)
= /ma(m)/m ALG)dG 8)dz
- / 4 = ale) 71(5) lo<e<adedG(0) =
and
/()ma(x)wc(a:)da: (L5)
< /0 * a(z) / A G(6)ds

= / 0 / A(e I[0<x<g]dxdG(0)

- /0 8dG(6) < oo.



Let W(z) = 6pag(z) — Ya(x). Using (1.4) and (1.5), we have
/0 W (2)|a(z)dz (L.6)
< /Ooo[ﬁoag(x) + ¢e(z)]a(z)dz < oco.

A test 6(x) is defined to be a measurable mapping from (0, c0) into [0,1] so that
d(z) = P{ accepting H1|X = z}, ie., §(z) is the probability of accepting H; when
‘X = z is observed.

Let R(G,d) denote the Bayes risk of the test § when G is the prior distribution. Then
R(G, d) can be expressed as

R(G,8) = Co+ / / 5(z) (6o — )f(a:|0)dxdG(0) (1.7)
= Co+ / 5(z) /:’ dG(9)|a(z)dz
= Co+ [ 8(@)lbsac(e) - ¢G<x)1 (z)dz
— Co+ /OOOJ(m)W(:c)a(a:)dx
= Co+ [ 8(2)lf — do(w)lac(z)a(z)dz,

where o~
Co = /0 (0 — 60) I1p>65dG(6),
and (z)
bo(e) = BPIX == = Y221

Here, ¢¢(z) is the posterior mean of 6 given X = z. ¢¢(z) is continuous and increasing
in z.
From (1.7), we see that a Bayes test g is determined by

1 if W(x)<0
‘5G(x):{ 0 if WE:U; >0 (198

10 if ¢G($)<00.

The minimum Bayes risk is

R(G,6¢) = Co + /0 56(2)W (2)a(x)ds. (1.9)
To exclude trivial cases, we assume that
¢G(O) < 90
1.10
{ G(bo) #1 (1.10)



From (1.10), we see that ¢¢(z) is strictly increasing and there exists a unique point
be < 6y such that ¢c(bg) = 6y. Pc(z) < by for z < bg, and ¢g(z) > by for z > be.
Therefore, the Bayes test dg can be represented as

_ 1 if beG
5G(“’)‘{0 if 2 <be.

We assume that, for some constant B > 0,

sup |a@(z)| < B, (1.11)
0<z<o+1
where 1 = 0,1,---,7 and r > 1. Note that (1.11) implies that G'(z) exists for 0 < z <
6 + 1. Furthermore, we assume that

G'(b) # 0. (1.12)

We will deal with this testing problem via the empirical Bayes approach. The empir-
ical Bayes approach was introduced first by Robbins (1956, 1964). Let X3, Xo,---, X,
denote the observations from n independent past experiences. Let X be the present ob-
servation. Denote X, = (X1, X, -+, X»). An empirical Bayes test 6,(X, X,) is defined
to be the probability of accepting H; when X and X, are observed. Let R(G,é,|Xn)
denote the Bayes risk of 4,, conditioning on X,, and R(G, §) = E[R(G, §|X,,)] the overall
(unconditional) Bayes risk of 6,. . _

Since R(G,é¢) is the minimum Bayes risk, R(G,d,|X,) — R(G,é¢) > 0 for all X,
and for all n. Thus, the regret R(G, dc) — R(G, ég) > 0 for all n. The nonnegative regret
R(G,6,) — R(G,é¢) is often used as a measure of performance of the empirical Bayes
test of &,,.

Empirical Bayes problem for the Uniform (0, #), a special case of (1.1), was studied by
a number of authors: Fox (1978), Van Houwelingen (1987), Nogami (1988), Liang (1990)
and Karunamuni (1999). For the distribution family having density (1.1), Gupta and
Hsiao (1983) considered the empirical Bayes rules in the selection problem formulation,
Datta (1991) studied the empirical Bayes rule in the estimation problem formulation.

In this paper, we consider the empirical Bayes rule in the testing problem formulation.

For clarity, we consider the different cases of a(z):

Case 1: a(z) — ag, where 0 < ag < 00, as z | 0,
Case 2: a(z){0asz |0,
Case 3: a(z) Tooasz |0,

Case4: a(z) > 0asz |0,



Case 5: a(z) > 0 asz | 0,

where 1 (or | ) stands for “goes to increasingly” (or “goes to decreasingly”, respec-
tively).

Although Case 2 is the special case of Case 4 and Case 3 is the special case of Case
5, our approach (or result) is a little different between Case 2 and Case 4. Also our
approach is different between Case 3 and Case 5. So we treat Case 2 and Case 3 as the
separate cases.
Define
G, = {G : G satisfies (1.10), (1.11) and (1.12)}.

For some £ > 0, L > 0 and by > 0 in Cases 2, 3, 4, 5, by = 0 in case 1, define

Go = {G : G satisfies (1.10) and (1.11),bg > by, min |W'(z)| > L},
zerg(ﬁ)

where Ny, (§) = {z: 0V (bg — &) <z < (bg + &) A 6p}. Then we can construct a Bayes
test d,, such that its regret has a convergence rate of order O(n_ﬁf) or O(n“'h%e;; 1
(different rates in different cases) for any G € Gy, where ¢, is any prespecified (large)
positive sequence such that ¢, — 0 as n — oco0. And we can also construct another
empirical Bayes test 0, such that its regret has a uniform convergence rate of order
O(n_i?z':’q) over the class G;. Taking a(z) = 1, we would get that supgeg, R(G,6) —
R(G,$) = O(n‘frzTrﬁ), which is a result obtained by Karunamuni (1999). But we exclude
the condition that b falls in some known interval [0, po], where py < 6 is a known
constant.

The paper is organized as follows: §1 gives the introduction; §2 constructs the em-
pirical Bayes test d,; §3 proves that the empirical Bayes test has a good asymptotic
property. §4 proves the lemmas stated in §3.

§ 2 Construction of Empirical Bayes Tests

We use the kernel method to construct the empirical Bayes tests. Let Kp(y) be a
Borel-measurable, bounded function vanishing outside the interval [0, 1] such that

1 1 if j=0
J — 9
/0 yK"(y)dy“‘{o if j=1,2,---,r—1, (2.1)
and let Y
Ki(y) :/0 Ko(s)ds. (2.2)

We may let B; be a positive constant such that |Ko(y)| < By for all y € [0,1]. Let €,
be any (large) positive sequence such that €, — 0. Without loss of generality, assume



€n > loén' Let u, be a positive sequence such that u, <1 and u, — 0 as n — 0o. For
any z € (0,00), define, for Case 1, Case 2 and Case 4,

1 & Ko(%2)

op(z)=— ) —H—=, 2.3.1
) = e (2:3.1)
:_””_z": ~) lf:Kl(Ef_z) (2.3.2)

nu 5 i3 a(X;) o

and for Case 3 and Case 5,
1 & Ko(224)

apl{r) = —— - 24.1

(z) mu 2 a(X)) (2.41)

z—Xj
z Ko ) 12 Kl(——L)
Yn(z — : 2.4.2
nu = n ]X:l a(X;) ( )
Let Wi(z) = 6pon(z) — ¥n(z). We shall show later that W,(z) is an asymptotically
unbiased and consistent estimators of W (z) (Lemma 3.1). For any G € G,, we propose
an empirical Bayes test d,(z, X,,) by

5 — 1 if (.’E > 00) or (dn S z S 00 and Wn(x) S O)a (2 5)
10 if (z<d,)or (d, <z <6y and Wy(z) > 0), '
where
0 for Case 1,
d, ={ max{z:a(z) < n,} for Case 2 and Case 4 , (2.6)
max{z : a(z) > nin,a(x) >1}+u for Case 3 and Case 5,

2r41
and 7, = ex* . Since 1, — 0 as n — oo, we know that d, — 0 as n — oo0. Suppose Ny

is the smallest positive integer such that bg > dn,. Then bg > d, for n > Ny. When we
discuss d,, we always assume that n > Ny without further mention in this paper.

Note that W(z) < 0if z € (0,bg); W(z) > 0 if z € [bg, o] Then the conditional
regret of 4, can be expressed as

R(G,6,1X,) — R(G,8) = /()oo(én—é)W(:v)a(x)d:c (2.7)

= | Iiw,@)<qW (z)a(z)dz

n

fo
+ [ Iw@>0lW (z)la(z)de
G



and the unconditional regret of 4,, becomes
be
R(G,6,) — R(G,§) = / P(W,(z) < OW(2)a(z)dz  (2.8)

+ [ PWalz) > OIW (lafa)ds

For G € G,, we also propose another empirical Bayes procedure 8, by

5 _{ 1 if (x> 6p) or (bp <z <6 and Wy(z) <0),

0 if (z<bo)or(b<c<bandWy(z)>0). &9

Then the unconditional regret of §,, becomes
- b
R(G,3,) - R(G,8) = /b *PWp(z) < OW(z)a(z)dz  (2.10)
0
']
+ [ P(Wa(z) > 0)|W (2)|a(z)de

ba

In the following section, the convergence rate of unconditional regret of ¢, for every
G € G, and the uniform convergence rate of unconditional regret of 4, over G, are
considered.

§3 Asymptotic Optimality of J,, and ¢,

The convergence rates of §, and &, depend on the properties of W (z) and W,,(z). The
more information about W(z) and W, (z) (including a(z)) is used, the more accurate
rate we will get. So firstly, we dig out a few properties of W, (z) and W(z). That is a
few lemmas, whose proofs are left to §4. Then we state a well-known fact. Following
that, two theorems about asymptotic optomalities of 8, and &, are given.

Note that w
Wa(z) = Opan(z) — Pn(z) = - > V(X;,z,n), (3.1)
=1

where, for Case 1, Case 2 and Case 4,

bo—z  Ko(X2) K55

V(X;,z,n) = u , 3.2)
(X5,.m) u a(X;) a(X;) (
and for Case 3 and Case 5,
0 . K z——'Xi K :c——Xi
V(X n) = -0 =% Kol | K ) (3.3)

v a(X;) T a(X)



Let W(z,n) = E[V(X;,z,n)] and Z;, = V(Xj,z,n) — W(z,n). Then we have
Lemma 3.1 W(z,n) can be expressed as
W(z,n) = W(z) +u"W(z,n), (3.4)
where W (z,n) is some function such that for all € [d, A by, 6],

W (z,m)]| < 200(r +2) +1

S T BB, = B,. (3.5)

Lemma 3.2 For z € [0,6y], |W(z)| < 26,B.

Lemma 3.3 For any fixed n, Zj;, are i.i.d., and for « € [d, A by, 6], EZ;n, =0,

: (3.6)

and E|Z:.|? 2(0,B
ElZjnf" ;'"' 52603+B2+————-—(° 1+1)

o2 ua*(z) (37)

where Bs = (20, +1)B;VB, and

ey _ ) min{a(s) :z <s<z+u} for Cases 1, 2, 4,
a*(z) = { min{a(s) :z —u < s<zx} for Cases 3, 5. (3.8)

From Lemma 3.3, we see that

P(Wa(z) > 0) = P(;Z2 S Zjn > —/no W (z,n)), (3.9)

V nk jn J=1

and
1

Zin < —/no2W (z,n)). 3.10
N e (UG

P(Wa(z) < 0) = P(

Based on Lemma 3.1, we obtain the following useful result:

Lemma 3.4 For z € [d,, A by, 6o),

W(z) > 2Byu” = W(z,n) > 0 and _I_"(/ile) <2, (3.11)

[02]



and
W (z) < —2Byu’ — W(z,n) <0 and |%| <2. (3.12)

Lemma. 3.4 allows us to replace W(z,n) with W(z) in (3.9) and (3.10). That makes
things a little easier since we will see that W(z) does not depend on n and has a few
good properties.

The above four hold for any G € G; or G,. Note the bounds in above lemmas do not
depend on G. So they are the uniform bounds over G; and G,. Next two lemmas give
the results related to some G € Gy, which will be used only when we consider d,,.

Lemma 3.5 For any G € Gy, there exist cg; and cga such that 0 < cg1 < bg < cgo <
6o, and for all x € {ce1, caa),

G'(be)

W'(z)| > 214(—1)@)(00 —bg) = Bgi, (3.13)
for all z € [0, cg1] U [cae, bo),
W (z)| > W(ce1) A |W(ce2)| = Bage. (3.14)

Lemma 3.6 For any G € Gy, let Ug = max{a(z) : cc1 < z < cge}. Then there
ezxists an integer N1(> Ny) such that for n > Ny,

6o
/d ljw@)<2Bzurja(2)dz < 4By BarUgu” (3.15)

Let Lg = min{a(z) : % < z < cge + 25202}, Then there erists an integer No(> Ni)
such that for n > Ny,

G,*(.’I?) { Z LG fOT TE [CG17CG2]1 (316)

> forx € [dn,dn V ca1] U [co2, 6o

When we consider the uniform rate of convergence of [R(G,d,) — R(G,§)], we need
the following two lemmas.

Lemma 3.7 For all G € Gy and all z € [0V (bg — &), (bg + &) A )],
W'(z)| > L, (3.17)

9



for all G € Gy and all z € [0,0V (bg — &)U [(bg + &) A s, 60)
W (z)| > LE. (3.18)

Lemma 3.8 Let U, = max{a(z) : by < < 6p}. Then there exists an integer N,
such that for all n > Ny,
bo 4B,U,
I[lW(:c)l§2Bzu']a(m)d-'E < -—z—ur.

Let L, = min{a(z) : 3 <z < 0+ 1}. Then there exists an integer Ny > N; such
that for allm > N, and a: € [bo, 6o]

[ (3.19)

a*(z) > L, > 0. (3.20)

Next we state a general well-known result. It is about the non-uniform estimate of
the distance between the distribution of a sum of i.i.d. random variables and the normal
distribution.

Result Let X, Xs, -+, X, be i.i.d random variables, EX; = 0, EX? = o? > 0,
E|X1]® < 00. Then for all x

)| <A P
[Fule) = 0(@)| € A b

Here ¥(z) is the c.d.f. of N(0, 1), F.(z) and p are given by

E|X,|?
—_— 03 .

F.(z) = 2X<

Remark The above result can be found in Petrov (1975, pp125 Theorem 14) or
Michel (1981). Here A is independent of n. Michel proved A < 30.54.

From the above result, we see that, for any fixed n,

ifx >0,
L S x50 (3.21)
= 1_Fn(:1;)
< 1—\If(m)+Am
< 1- ()+A\]/3_|I)21|§3,

10



ifx <0,

P(al—n X <) (3.22)

U(z)+ A

IA

S (N
V(1 + [z)?
E|X,[?

Vnlzlo®

AN

U(z)+ A

Now, we prove our main results. The first one is related to d,:
Theorem 3.9 Let u = u(n) = n~ T for Cases 1, 2, 8, 5 and n_rlﬂe; = for Case
4. Then we have, for every G € Gy, as n — oo, for Case 1, Case 2, Case 8, Case 5,
lim n3¥1[R(G, 6,) — R(G,6)] < 16B3BaUg + 2Bg < oo, (3.23.1)
and for Case 4,

lim n#¥1¢,[R(G,6,) — R(G,6)] < 16B3BeUc + 2B < oo, (3.23.2)
where
200BA(6,) + —'ic"-@s-‘iq +2A(200B + B, + 2eB1E1) A () for Cases 1, 5,
B =14 20,BA(6) + M +2A[(200B + By)A(6o) + (260By1 + 1)6y)  for Cases 2, 3,
20,BA(6,) + M + 2A(200B + B, + 20, By + 1) A(6,) for Case 4,

and amin, = min{a(z) : 0 <z < 6y} > 0 in Cases 1, 5.
Proof. From (2.8),
RGd) —R(G,d) = [ PuWa(o) S OW@a@ Tocwmmgosrids (320
+f : Pa(W(@) > 0)|W (2)[a(e) [z <) <ard®
+ [ " Po(Wa(z) < )W (2)a(e) w0280

+ [ o (Wa(z) > 0)|[W (2) (@) Iw (o) <—25,0r1d

= [+I1T+1IT+1V.
Part I and Part IT are easy to handle, since we have Lemma 3.6. Using (3.15), we have,
as n > Ny,
ba
1< 2By’ /d Toww (z)<28yu0(x)dz < 8B2BUgu®, (3.25)
11



and
6o
I S 232'11,’/’; I[_ggzursw(x)<0]a($)d$ S 8B§BG1UGu2T. (326)
le]

Part III and Part IV are a little more complicated. We treat Part III first. Using (3.9),
(3.11) and (3.22), we have

ba -
111 < ——— % Zin < —/n072W(z,n)) [w( oW (z)a(z)dz 3.27
/n nEZJZn?: ] (z, n)) w(z)>2B.u W (z)a(z) (3.27)
< [ P 3 Zin < — 2107 W () 52800 W (@)a(e)d
w4 /nEZ} 0 2
b . |3
< [ Ut W @)W @aa)ds + [ Al Wz)ala)dy
" dn x| = 3y/no?W(z)| x o}
cg1Vdn 1
< / \If(-—-z— no;2W(z))W(z)a(z)dz
+/ ncr‘2W( NW (z)a(z)dz
G'lVdn
be 2A E|Z;,?
L 'az Calas
= V+VI+VII

Using (3.6), (3.16) and (3.14), we have

v

IA

/ :‘”Vd" <1>(—-1\/ﬁ\/g’; Bea)W (2)a(z)dz

< @(—Eg-z—‘/nunn) x 200 BA(6y).

Slnce /7T, > logn, there exists an integer N3(> N,) such that forn > Nj, ®(—2a2 52\ /MuTy) <
; and

20,BA(60) _ 20:BA(0)

n - nu
As for Part VI, using (3.6) and (3.16), and making change of variable y = 3-v/nuLcW (),
we obtain

V< (3.28)

VI < /c:w,,q)("?éi nua ()W (2))W (z)a(z)dz (3.29)

12



< /:G Ug@(——zjla?/nuLc;W(x))W(x)dx

GlVdn
b
< —BaUg / ¢ (e [rul oW (@)W (5)W (z)dz
ca1Vdn 2B3
2 - vnuLgW(cg1Vdn)
< '4BG11;BaUG x oo [T a gy
G nu Jo
B? 0
< @%ﬁgxi ®(-y)ydy
G nu Jo
< 2BaBiUs 1
- Lg nu

We consider VII in different cases. For Case 1 dnd Case 5,

2A(29()B + B2)A(90) + 2_4 ba 20031 +1

VII < a(z)dz (3.30.1)
nu n Ja. ua*(z)
2A(260B + B,) A(6o) + 2A(260B, + 1)A(bo)
- nu Omin VU '

For Case 2 and Case 3,

VIl <

b
24(200B + By)A(Bo) | 24 [ BBt ir (3302)

nu n Ji,  ua(x)
2A(260B + B,)A(6) 4 2A(26, + 1)B16,
nu nu )

For Case 4,

6B 24 b
2A(200B + B;)A(6) | 24 e —Z-Ma(x)dx (3.30.3)
‘ nu n Jd, Uy

< 2A(260B + B,)A(6,) + 2A(20,B; + 1) x A(8) x n,;l

nu

VII <

n

Combining (3.28), (3.29) and (3.30), we get that when n > N3,

Bg x L for Cases 1, 2, 3, 5,
Bg x ——  for Case 4. (3.31)

nuny

IIIS{

Now we deal with V. Similar to III, we get

IA

o 1 n -
5" Z:n > —1/no=? —2Byur .
/b P( "B, > Zjn > no, W (z,n)) [w(z)<—2B,ur)|W () |a(z)dz  (3.32)

G ji=1

o 1 n 1
| / P(\/W Zin 2 =502 W (@) 1w (o)< 282001 |W () a(2) da
in

13



IN

8o b0 AE|Z;n}|W (z)|a(z)dz
- -2 J
/bc [1 \/na [W (2))]|W (z)]a(z) d:B-l-/

Vi x 3 /no2|W(z)| x o3
/c:[l - ‘I’(%\/na,:le(x)|)]|W(m)1a(x)dx

. /m[ e _l,Fm—z|W(x)|)]|W(:v)la(m)dx

b 24 E|Z1n|3
+/b a(z)dz

¢ M o2

VIIT+IX + X.

Using (3.6), (3.16) and (3.14), we have

VI < [ - GV B (ala)ds
= - oG ymm) [ W@l

< 0GR ymm) [ W@l

< L= S5 /)] x 200BA().

By the symmetric property of ¥(z), for n > Nj, 1 — @(%M) <1and

VIIT <

260BA(6,) _ Bo (3.3
—— .

~ nu’

Similar to VII, we obtain

IX < /“”[1—q>(—i nua ()W (2))]|W () |a(z)de (3.34)
ba 233
1
< Ugll — ®(————+/nuLsW (2)||W (z)|dx
| Uslt = (g ruLaW @)W (@)
cG2 1
< —BaUs /b [1—@(—-2-1-3— nuLeW (2))]|W (2)|W'(z)dz
4BGIBaUG 1 rogvme uLg|W(ca2)|
< To Xmals [1 - @(y)]ydy
4BG1B Ug 1 b
< I8 TY o —
< To = nalo (1 - 2(y)]ydy
2Ba1B3Us 1
- L¢g nu

We consider Part VII in different cases. Obviously, for Case 1 and Case 5,

X

24(260B + By)A(6) , 24 /oo 200B; + 1
b

nu n Joo ua*(x)

a(z)dz (3.35.1)
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24(260B + B;)A(60) , 24(260B; +1)A(60)
nu AminNU

b

where a,,;, = min{a(z) : 0 <z < 6p}. For Case 2 and Case 3,

2A4(260B + By)A(6o) , 2A (% 260B, +1

nu n Jbg ua(x)
24(200B + By) A(6o)  2A(200B1 +1)0o
< n nu '
For Case 4,
6
X < 2A(290B + BZ)A(HO) + _2___4 0 ggg_%i.la(z)dx (3353)

nu n Jbe UM

< 24Q0B+ By)AG) | 2A(200B; + 1) X A(f) X ——.
nu numy,

Combining (3.33), (3.34) and (3.35), we get that when n > N3,

Bg x 2= for Cases 1, 2, 3, 5,
Bg x A~ for Case 4.

NUNn

(3.36)

IV<{

From (3.25), (3.26), (3.31) and (3.36), we get, for n > Nj,

16B3Bc1Ug X u*' +2Bg x = for Cases 1, 2, 3, 5, 537
IGB%BGlUG x u?r + 2BG x =L for Case 4, ( ) )

numn

R(G,8,)—R(G,6) < {

R S —2r
For Cases 1,2, 3,5, u=n"%+, So u¥ = L =n %+, and

lim n7%1[R(G,6,) — R(G, )] < 16B2Be,Ug + 2Bg < oo.

1 2r41 2

__1 ~ oo ——— —
For Case 4, we have u = n e, ™, 1, = €a™ . So v = -1 =n "=}, and
nUNA

lim n¥¥1e,[R(G,8,) — R(G,0)] < 16B2Be1Ug + 2Bg < 0.

The proof is completed.

Next, we consider the uniform rate of convergence of R(G,é,) — R(G,9).

Theorem 3.10 Take u, = n~%. Then we have, as n — oo, for Case 1, Case 2,
Case 8, Case 4, Case 5,

2r —_ 2
lim n?5T sup [R(G,3,) — R(G, 8)] < 2E2Ys

Jim 07T sup 1 +2B, < oo, (3.38)
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Proof. In this proof, let cg, = 0V (bg — &), cg2 = (bg + &) AGy. For any G € G, like

(3.24), we have

- b
R(G,8:) ~R(G,8) = [ Pu(Wa(a) < OW (a)a(z) locw(campurida
+ [ PuWa(o) > OW (0)]0(@) i 2 swiorcods
+ /  (Wa(z) < )W (2)a(2) Iwxy>2800 4

+ [ PuWalo) > OIW (@)la(o) ey <2

= I+IT+1IT+1V.
Using (3.19), we have, as n > N,

ba 8B2U,
I< 2Bzu’/b Tocw (z)<2Byurja(z)dz < %Uzr;
0

and

6o
II S 2BQUT/ I[_232ursw(z)<o]a($)d$ S
ba L

Similar to (3.27)

11 < /b:G‘Vb"q;_l,/na;zW(x))W(z)a(x)dx

+ / — na—ZW( )W (z)a(z)de
G1Vbo
be 24 E|Z1n|3
+,

o T o2

= V+VI+VII

a(z)dz

Consider Part V first. If by < c¢gy,
ca1Vh
Vo< / . °<1>(-1\/72V“L“L YW (2)a(z)dz
bo
\/T CGlVbO d
- 233 nu / (z)a(z)dz
<
< 2B3\/nuL / W(z)a(z)dz
< q) "‘2—B3V7ZULG,)200BA(00)

16
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Since v/nuL, > logn, there exists an integer N3(> N3) such that forn > N3, &(—

1 and
20,B
T‘; A(6).

V<

Now consider VI.

VI < /GIVbO O( ———\/nua*(m W(z))W (z)a(z)dz (3.43)
U, /CGIVbO @(—?E;\/nuLaW(x))W(x)dx

ba 1
-Ly, O(—— L, !
L U/cclvbo ( 2B3\/nu W (z))W (z)W'(z)dz
B;‘,’Ua X_l—/-—z-}a—a-\/MW(cmvbo)@
LL, nu
4BU, 1 [
L. = nalts ®(—y)ydy
2B2U, 1
< 8379 x —.
- LL, Xnu

For VII, using (3.7) and (3.20), we have

IA

IA

IA

—y)ydy

IA

VII< -2;14(2903 + By A(6) X % L HA0BAG) 1

L, nu’

Combining (3.42), (3.43) and (3.44), we get that when n > N3,
[II< B, x ~.
nu

where
2B§ U, 4A60yB; A(6,)

B, = 26,BA(6,) + 7 T 2A(264B + B3)A(6,) + 7

Similarly, we have
1
IV < B, x —.
nu

From (3.40), (3.41), (3.44) and (3.45), we get, for n > N3,

16BU, 1
— L 27 T _
R(G,6) — R(G,8) < ——2=% x 4" + 2B, x —

: -1 __2r —_—
Sinceu=n"71, 4 =L =n %17, Whenn >N
3 nu 35

2
T sup [R(G, 5,) — R(G, 8)] < “8B20e

+ 2B,.
GegGa L ¢

17
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This completes the proof.

Remark For Case 1, by = 0. Since (1.10) implies bg > by = 0, we have

G, = {G : G satisfies (1.10) and (1.11), Gr;/nn( |Wi(z)] > L}.
T bG
Theorem 3.10 tells us that

2
lim 275 sup [R(G, 6,) — R(G, 8)] < -8B2Ue
n—00 GeGy L

+ 2B,,

which is a result obtained by Karunamuni(1999). But we do not require in G, that bg
falls in [0, po], where py < 0y is a known constant.

§ 4 Proofs of Lemmas

Proof of Lemma 3.1 From their definitions, ag(z) and ¥g(z) are monotone func-
tions. Thus ag(z) < 00 and YPg(z) < oo for z > 0 by (1 4) and (1.5). Since ag)(O) < B
from (1.11), ag(0) < oo, and ¥(0) < f} df(: + [ A(0 2@ 9G(0) < ag(0) + ¥e(l) < oco.
So we have ag(z) < 0o and Yg(z) < oo for all z > 0. Note that

/:OOZG(S)dS = / Is>a:]/ I[9>s]dji:

_ dG(G)
- / io>=)(6 A(())

_ dG(6)
- / -2 %)
= 9Pg(z) — zac(z).

Then o
W(z) = (6o — z)ac(z) — / ac(s)ds. (4.1)

In Cases 1, 2, 4. Using Taylor’s Theorem, (2.1) and (2.2), a straight-forward computation
shows that

Ko()—{‘;:—m)
Bl ua(X) ] “2)
= / / a(y I[0<y<0]dde(0)
= / /oo 1 29) I[0<y<0]dde(9)
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1 y—x
= " 2K "F)ac(v)dy
1
= /0 Ko(t)og(z + ut)dt
1 1 ) )
= /0 Ko(t)aa(z)dt + /0 Ko(t)uta® (z)dt + -+ - + / Ko(?) ——aG (¢ + utl)dt
r 1 ! r (r) *
= ag(z)+u x;—'/o Kot} ag’ (z + ut})dt,

where 0 < ¢} < 1. Also,

KI(ZI,}:E) "
E[a(—X])] (4.3)
) oof{1 a
= /0 A y A0 )I [o<y<e1dydG(0)
— /Ooo OooKl( —x)AEQ) 0<y<0]dde(0)
= /000 OooKl(y Jac(y)dy
= -~k /y ac(s)dslize + 3 [ 1 aelo)dslia(U =)y

- /0 Kolt [/ (s)ds]dt

= /0 [/x ac(s)dsldt + / Ko(t)ag(t)utdt + -

'r+1 r+1
+ / Ko(t) Tres

= / aG(s)ds—i—urx

where 0 < t5 < 1. Let

al)(z + ut)dt
U r<+1

W(z,n) = M / L ()0 (@ + utt)dt (4.4)

r+1 (r) *
(r+1 / 1 Ko (t)al) (z + utl)dt.

By (3.2), (4.1), (4.3) and (4.4), we have
W(z,n) = W(z) +u"W(z,n).

Since ag)(a:) < Bfor z € [0,00+1], z+ut; < 6p+1 and z+uti < Op+1 for z € [d,, Abg, 6],

26, BB,
———BB) + ———
r+D)! T e+ T

19
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for z € [d, A by, 0. For Cases 3, 5, the similar computation shows that
W(z,n) = W(z) + «"W(z,n),
and |W(z,n)| < B, for z € [d, A by, ).

Proof of Lemma 3.2 By (1.10), 9¢(0) < 6pac(0) < 6oB. Thus 9g(z) < 6B for
z € [0,6p). Then we have

W ()| 6o () — o ()|
900[@(1‘) + ’l/)G(.’E)
9001@(0) + 'tﬁg(O)

26yB.

VAN VAN VAN

Proof of Lemma 3.3 Obviously, Z;, are i.i.d. for fixed n. A few computations
show that, for Cases 1, 2, 4,

o2 = EZJ?n
< EBV(Xjz,n)?
_ [ b~z Ko(F)  Ki(Y2E) 2 a(y)
= /0 / [ " fz(y) - oy ] A(9)10<y<a]d?!dG(9)
— [ g 00 - K0 — uka (o Pac(ody
-/ ' m[(ao — 2)Ko(t) — uKy ()Pac (e + ut)dt
< ua?(x) (200B; + B;)>.
Then (3.6) is proved. And also,
_ -z Ko(%7) Ki(5®) |
|Zjn‘ - III}>38(| Ou a(y) - a(y) +|W("Ban)|
= % ooy (00— Ko(t) — w0+ (&) + By
% + 2008 + Bo.

For Cases 3, 5, the proof is similar. We omit it here.

Proof of Lemma 3.4 From Lemma 3.1, |W(z,n)| < B, for all z € [d,, A by, 6p). If
W(z) > 2Byu",

wW(z,n) = v [W(z) + v W(z,n)] = u"W(z) + W(z,n) > 2By — By = B, >0
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and

W(z uW(z)
W(z,n) u~W(z) + uW(z,n)
u"W(a:) — 2B, + 2B,
uW(z) — 2By + By
< 2.

IA

Then (3.14) is proved. (3.15) can be proved in a similar way.

Proof of Lemma 3.5 From (1.11), we know G'(z) = g(z) exists. Then

W'(z) = j((z)) (z — ).

Thus we have W/(z) < 0 for z < 6. By (1.12), we know W'(bg) < 0. Since W'(z) is
continuous by (1.11), we can choose cg; and cgy such that cg; < bg < cga < 6y and for
all z € [cg1, caal,

—W'(z) >

W' (b _
——————2( c) = BG}.

On the other side, let Bgy = min{W (ca1), |W (cg2)|}. We have

Proof of Lemma 3.6 Since u” — 0 as n — oco. There exists an integer Ny(> Np)
such that for all n > Ny,

2Bzur < Bgs.
Then |W(z)| < 2Byu” implies z € [cg1, cg2]- So, using change of variable y = %%);, we
have
6o G2
" Iwencswe@)ids = [ weisswna(z)ds
€G1
cG2
< UgBea / Iyw (@)\<2Byur)[— W' (z)]dz
G
gy
< 2UgBgi Byu' W(cazz) Iijyi<ndy
2BouT”

< 4B3BgUgu’.

(3.11) is proved. As for (3.12), we take Ny(> Ni) such that u < €&t A 99‘—26'62 and
nn < min{a(z) : 0 < z < 6} for cases 1, 3, 5. For £ > d,, by our definition of d,,
a*(z) > 1, for Cases 2, 4 and a*(z) > min{a(z) : 0 < z < 6y} > 7, for Cases 1, 3, 5.
For z € [Cg1, Ca2), we have %ﬂ <z—-—u<z+u<Cg + 04’—_—59@1 Thus a*(z) > Lg.
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Proof of Lemma 3.7 (3.17) is from the definition of G,. We prove (3.18) here. If
bg — &> 0, for z € [0,bg — €], by the mean value theorem

W(be — &) — W(bc) = -W'(z")¢,

where z* € [be — €, bg]. Note that W (bg) = 0 and |W'(z)| > L. Thus |W (bg — &)| > LE.
If bg + & < by, W(bg + &) — W(bg) = W'(z**)€, where z** € [bg,bg + £]. Thus
|W (bg + &)| > LE. So for z € [0,0V (bg — £)] U [(be + £) Ao, b0], [W(z)| > LE.

Proof of Lemma 3.8 .
Since u" — 0 as n — oo. There exists an integer N; such that for all n > Ny,

2By < LE.

Then |W (z)| < 2Byu” implies z € [0V (bg — &), (bc+&) Ay). So, using change of variable
Y= 5‘%2(%, we have
fo (b +£)A8o
/0 Iw)|<2Buria(z)de = /Ov(bc_ 9 Inw(z)|<2Byurj0(z)d
< U [ famn |- W (@))da
0V (ba—§) -

W (OV(bg—£))
U, Bou" [~ 3B,

= L Jwiegtoneg Iyi<ndy
2u
4B2Uaur
S v
We prove (3.20) for different cases. For Case 1, by = 0, a*(z) > L,. For Cases 2, 3, 4, 5,

) f
we can find Ny(> Ny) such that u < 2 A1. Forz € [by,60), & <z —u <z+u < f+1.
Thus a*(z) > L,.
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